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ABSTRACT
We introduce a skewed version of the continuous uniform distribution based on
a general procedure to extend distributions proposed by Cortés et al. [Journal of
Probability and Statistics, Vol. 2018, pp. 1-10.]. We determine the density and the
cumulative distribution function of the new distribution and study diverse properties
like moments, moment generating function, shape characteristics, quantile function,
Hazard rate, entropy and maximum likelihood estimators. We apply the new model
to describe COVID-19 mortality rates and online product reviews.
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1. Introduction

In the last few decades, many efforts have been made to transform or extend known
probability distributions in order to make them more flexible for applications. While
classical models may be too “rigid” to be fitted to real world data, the extended
distributions aim to accommodate specific features like skewness, bimodality or fat
tails, for example. One of the oldest approaches to obtain skew distributions consists
of defining a density by

h(x) = 2f(x)G(λx),

where f is a probability density (pdf), G a cumulative distribution function (cdf)
and λ a new parameter introduced to control skewness and kurtosis. Usually, f and
G refer to random variables that are symmetric about 0. This approach has been
pursued by many authors. In particular, Abid (2015), Chang et al. (2005, Section 3),
Nadarajah and Aryal (2004) and Nadarajah and Kotz (2005, Section 7) have used
this idea to define a skewed version of the continuous uniform distribution. Somewhat
more elaborated attempts to create skew distributions are the alpha-skew generalized
distributions, see Elal-Olivero (2009, p. 226), Shams Harandi and Almatsaz (2013,
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p. 775), Acitas et al. (2015, p. 356) and the alpha-beta-skew generalized models, see
Esmaeili et al. (2019, p. 607). A more general method to extend distributions, which
incorporates the aforementioned procedures, was developed by Cortés et al. (2018).

In the present paper we apply the latter procedure to the uniform distribution. The
results may be useful for practice, since the uniform distribution appears in many areas
like random number generation, physics, epidemiology, finance, traffic flow modeling
and hypothesis testing. The distribution presented here may also serve as an alterna-
tive to other distributions supported on a bounded interval like e.g. the Beta or the
Kumaraswamy distribution.

In the next section, we present the density, the cumulative distribution function
and moments of the general skew uniform distribution. In Section 3, we focus on
the standard form of the skew uniform distribution, studying pdf, cdf, Hazard rate
function, moments, shape characteristics, quantile function and the moment generating
function. Section 4 studies the Shannon entropy and maximum likelihood equations
of the new probability model. Finally, Section 5 presents applications in modeling
COVID-19 mortality rates and product reviews.

2. The new distribution

Cortés et al. (2018, p.2, eq. (3)) proposed a general construction principle to obtain
a new continuous probability distribution. Let g(x) be a given density and h(x) a
positive continuous function such that K =

∫
h(x)g(x)dx is finite. It can be easily

shown that

f(x) =
1 + ξh(x)

1 +Kξ
g(x) (1)

is a probability density with shape parameter ξ ≥ 0. The constantK can be interpreted
as the expectation of a random variable X with density g(x). In the present article we
assume that

g(x) =
1

d− c
for c ≤ x ≤ d (2)

is a uniform distribution and the positive function h is given by

h(x) = (1− ax− bx3)2. (3)

We obtain the general skew uniform density as

f(x) =
1 + ξ(1− ax− bx3)2

1 +Kξ

1

d− c
(4)

where K is defined as above. Setting

C = (1 +Kξ)(d− c) (5)
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we can write the density as

f(x) =
1 + ξ(1− ax− bx3)2

C
for c ≤ x ≤ d (6)

which is a polynomial of degree 6 in x, and C is the (inverse) normalizing constant.
After expanding the numerator in (6) one can calculate the corresponding cumula-

tive distribution function as

F (x) =

∫ x

c
f(s)ds =

ξb2(x7 − c7)

7C
+

2ξab(x5 − c4)

5C
− ξb(x4 − c4)

2C
+

ξa2(x3 − c3)

3C
− ξa(x2 − c2)

C
+

(1 + ξ)(x− c)

C
.

(7)

Some algebraic manipulations yield an analogous expression for the noncentral mo-
ments:

µ′
k = E(Xk) =

ξb2(dk+7 − ck+7)

(k + 7)C
+

2ξab(dk+5 − ck+5)

(k + 5)C
− 2ξb(dk+4 − ck+4)

(k + 4)C

+
ξa2(dk+3 − ck+3)

(k + 3)C
− 2ξa(dk+2 − ck+2)

(k + 2)C
+

(1 + ξ)(dk+1 − ck+1)

(k + 1)C
. (8)

The latter can be written in the compact form

µ′
k =

1

C

7∑
i=1

ri
dk+i − ck+i

k + i
, (9)

where the coefficients ri are given as

(r1, . . . , r7) = (1 + ξ,−2ξa, ξa2,−2ξb, 2ξab, 0, ξb2). (10)

Using (9), the expectation and the variance are obtained as

E(X) = µ′
1 =

1

C

7∑
i=1

ri
d1+i − c1+i

1 + i
(11)

and

V (X) = µ′
2 − (µ′

1)
2 =

1

C

7∑
i=1

ri
d2+i − c2+i

2 + i
− 1

C2

(
7∑

i=1

ri
d1+i − c1+i

1 + i

)2

. (12)

There are no “simple” closed forms for the central moments, but by means of an
adequate software for symbolic calculation, e.g. MAPLE, one can easily calculate them
by means of the formula µk = E((X −µ′

1)
k). The same holds for shape characteristics

based on moments, like skewness and kurtosis. We will return to this topic in the next
section.
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3. Standard form of the skew uniform distribution

In order to reduce complexity, we limit ourselves from now on to the uniform distri-
bution over [0, 1], i.e. we assume that in (2.2) it holds c = 0 and d = 1.

From (6) we obtain the density

g(y) =
1 + ξ(1− ay − by3)2

C0
for 0 ≤ y ≤ 1, (13)

where

C0 = 1 + ξ

(
b2

7
+

2ab

5
− b

2
+

a2

3
− a+ 1

)
.

The distribution (13) will be called the abξ-skew uniform distribution (SU). If the
parameter values tend to infinity, the following limiting distributions arise:

lim
ξ→∞

g(y) =
1 + ξ(1− ay − by3)2

b2

7 + 2ab
5 − b

2 + a2

3 − a+ 1
, (14)

lim
a→±∞

g(y) = 3y2, lim
b→±∞

g(y) = 7y6.

Note that if Y has a skew uniform distribution over [0, 1], then

X = (d− c)Y + c (15)

has a skew uniform distribution over the general interval [c, d].
From (7) we obtain the cdf as

G(y) =
1

C0

(
ξb2y7

7
+

2ξaby5

5
− ξby4

2
+

ξa2y3

3
− ξay2 + (1 + ξ)y

)
. (16)

Fig. 1 illustrates examples for the pdf and the cdf of the distribution in question. It
turns out that the density may assume very different shapes with one to three modes.
Note that the derivative of (13) is

g′(y) = − 2ξ

C0
(1− ay − by3)(a+ 3by2). (17)

An elementary analysis shows that (17) has at most three zeros and the density (13)
can have at most three modes. For ξ = 0 or a = b = 0 the constant density g(y) = 1
over [0, 1] is obtained.

From (13) and (16) one can easily obtain the Hazard rate function as

R(y) =
g(y)

1−G(y)
=

1 + ξ(1− ay − by3)2

C0 − y − ξ
(
b2y7

7 + 2aby5

5 − by4

2 + a2y3

3 − ay2 + y
) (18)

which is an important quantity of survival analysis and may be interpreted as the rate
of death (failure) of an item that has reached a certain age. Some examples of the
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(a) Density given by (13).

(b) Cumulative distribution func-

tion given by (16). Each cdf corre-

sponds to the fdp in part (a) with
the same linestyle.

Figure 1. Density and cumulative distribution function of the abξ-skew uniform distribution.

function (18) are illustrated in Fig. 2. The selected parameter values correspond to
those in Fig. 1.

Figure 2. Hazard rate function (18) of the abξ-skew uniform distribution.

We obtain the noncentral moments from (8) as

µ′
k =

1

C0

(
ξb2

k + 7
+

2ξab

k + 5
− 2ξb

k + 4
+

ξa2

k + 3
− 2ξa

k + 2
+

1 + ξ

k + 1

)
. (19)

In particular we get the expectation

E(X) = µ′
1 =

1

C0

(
ξb2

8
+

2ξab

6
− 2ξb

5
+

ξa2

4
− 2ξa

3
+

1 + ξ

2

)
. (20)

Using e.g. MAPLE one can derive formulas for the central moments µk = E((X−µ′
1)

k)

and from these one obtains formulas for the skewness γ1 = µ3/µ
3/2
2 and the kurtosis
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γ2 = µ4/µ
2
2. For example, in the case ξ = 1, b = 0 the model (13) reduces to

g(y) =
1 + (1− ay)2

C0
=

1 + (1− axy)
a2

3 − a+ 2
(21)

This is the alpha skew uniform distribution, see e.g Elal-Olivero (2009, p. 226, eq.
(2.2)), Shams and Alamatsatz (2013) and Acitas et al. (2015) for analogous concepts.
The distribution (21) has the following characteristics

E(Y ) = µ′
1 =

3a2 − 8a+ 12

4a2 − 12a+ 24
(22)

V (Y ) = µ2 =
3a4 − 24a3 + 128a2 − 240a+ 240

80(a2 − 3a+ 6)2
(23)

γ1 =
µ3

µ
3/2
2

=
a(a5 − 12a4 + 96a3 − 296a2 + 432a− 288)

√
20

−(3a4 − 24a3 + 128a2 − 240a+ 240)3/2
(24)

γ2 =
µ4

µ2
2

=
15

7

13a8 − 208a7 + 204a6 − 10400a5 + 33120a4 − 70656a3 + 104448a2 − 96768a+ 48384

(3a4 − 24a3 + 128a2 − 240a+ 240)2

(25)

which are graphically illustrated in Figure 3.
It might be interesting to observe that the above measures may have several local

minima and maxima. For the specific case ξ = 1, b = 0 in (13) considered above (see
(21)) one can also obtain a closed-form representation of the quantile function, i.e. the
inverse of the cdf (16). To this end the equation

G(y) =
1

C0

(
a2y3

3
− ay2 + 2y

)
= p (26)

has to be solved for y, where 0 ≤ p ≤ 1 and C0 = a2

3 − a+ 2. There are two complex
conjugate solutions and one real solution y0, given by

y0 =
L− 1/L+ 1

a

where

L =

(
−2 +

3

2
pC0a+

√
5− 6pC0a+

9

4
(pC0a)

2

)1/3

. (27)

The quantile function is therefore

Q(p) = G−1(p) =
L− 1/L+ 1

a
(28)

with L as in (27). Using the Inverse Transform Method one can now easily simulate
outcomes of the alpha-skew uniform distribution (21). It is only necessary to construct
a sample (u1, . . . , un) of the uniform distribution over [0, 1]. Then a sample of (21) is
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(a) Expectation (22). (b) Variance (23).

(c) Skewness (24). (d) Kurtosis (25).

Figure 3. Characteristics of the alpha-skew distribution (21).

given by (Q(u1), . . . , Q(un)). Fig. 4 illustrates the histogram of 10000 outcomes of the
distribution (21), generated in this way. The solid line is the corresponding density.
It turns out that the density corresponds well to the stochastic representation of the
random variable.

Figure 4. Simulation of the alpha-skew distribution (21) for a = 3.

In principle, the Inverse Transform Method works also for the general cdf (17). In
this case the values Q(µ1), . . . , Q(µn) must be determined by a numerical procedure,
for example, the Newton-Raphson method to solve the equation G(y) = ui for y
(i = 1, . . . , n).

Using integration by parts, the moment generating function of the -skew uniform
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distribution (13) can be written as

MY (t) =

∫ 1

0
etyg(y)dy =

1

C0t7
(
p1(t)e

t + p2(t)
)
, (29)

where p1(t) and p2(t) are polynomials defined by

p1 = (1 + (a− 1 + b)2ξ)t6 − 2ξ(a+ 3b)(a− 1 + b)t5 + 2(15b2 + (12a− 6)b+ a2)ξt4

− 48

(
5b

2
− 1

4
+ a

)
bξt3 + 48

(
15b

2
+ a

)
bξt2 − 720ξb2t+ 720ξb2

and

p2 = −(1 + ξ)t6 − 2ξat5 − 2a2ξt4 − 12bξt3 − 48abξt2 − 720ξb2.

The characteristic function is obtained by substituting t in (29) by it, where i =√
−1. Since X is a linear transformation of Y (see (15)), the moment generating

function of X is given by

MX(t) = etcMY ((d− c)t) =
etc

C0(d− c)7t7

[
p1((d− c)t)e(d−c)t + p2((d− c)t)

]
.

4. Entropy and Inference

The Shannon entropy of a continuous distribution with pdf g(y) is defined as H =

−
∫ 1
0 g(y) ln(g(y))dy. It appears that no closed-form representation exists for the en-

tropy, when g(y) is given by (13). We restrict ourselves again to the alpha skew uniform
distribution with density of the form (21).

By means of the substitution z = 1 − ay and several algebraic manipulations we
obtain the explicit expression for the entropy:

H(a) = −
∫ 1

0
3
1 + (1− ay)2

a2 − 3a+ 6
ln

(
3
1 + (1− ay)2

a2 − 3a+ 6

)
dy

=
3a(−a2 + 3a− 6) ln

(
3 a2−2a+2

a2−3a+6

)
+ 12

(
ln(a2/2− a+ 1)− arctan(a− 1)

)
− 3π + 2a(a2 − 3a+ 9)

3a(a2 − 3a+ 6)
.

The dependence of the entropy from the parameter a is illustrated in Fig.5.
The entropy takes the global maximum at a = 0. Another local maximum occurs

at a = 1.751, while two local minima occur at a = 1.180 and a = 12.39. Furthermore,
it holds that lima→±∞H(a) = 2

3 − ln(3) = −0.4319. Since the Shannon entropy aims
to quantify the amount of uncertainty of a distribution, it might be interesting to look
for an interpretation of the local extrema.

For a given sample (y1, . . . , yn) the likelihood function of the abξ-skew uniform
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Figure 5. Shannon entropy of the alpha-skew distribution (21).

distribution (13) is given by

L =

n∏
i=1

g(yi) =
1

Cn
0

n∏
i=1

(
1 + ξ(1− ayi − by3i )

2
)
.

By taking the logarithm one obtains the log-likelihood function as

l =

n∑
i=1

ln
(
1 + ξ(1− ayi − by3i )

2
)
− n ln(C0).

The partial derivatives of the function l are

∂l

∂ξ
=

n∑
i=1

(1− ayi − by3i )
2

1 + ξ(1− ayi − by3i )
2
− n

C0

(
b2

7
+

2ab

5
− b

2
+

a3

3
− 1

)
,

∂l

∂a
=

n∑
i=1

−2ξ(1− ayi − by3i )
2yi

1 + ξ(1− ayi − by3i )
2
− nξ

C0

(
2b

5
+

2a

3
− 1

)
,

∂l

∂b
=

n∑
i=1

−2ξ(1− ayi − by3i )
2y3i

1 + ξ(1− ayi − by3i )
2

− nξ

C0

(
2b

7
+

2a

5
− 1

2

)
.

The likelihood equations are now obtained by setting these derivatives to zero. By
means of the notation

Ei =
(1− ayi − by3i )

2

1 + ξ(1− ayi − by3i )
2
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the likelihood equations can be written in the compact form

n∑
i=1

Ei =
n

C0

(
b2

7
+

2ab

5
− b

2
+

a3

3
− 1

)
,

−2ξ

n∑
i=1

Eiyi =
nξ

C0

(
2b

5
+

2a

3
− 1

)
,

−2ξ

n∑
i=1

Eiy
3
i =

nξ

C0

(
2b

7
+

2a

5
− 1

2

)
.

5. Applications

As Fig. 1 illustrates, the abξ-skew uniform distribution has a flexible density which
may be constant (e.g. for ξ = 0), convex, concave or even oscillating. The density can
have up to five local extremes (see the dotted curve in Fig. 1). Interesting applications
arise in the case of U-shaped or similar (J-shaped) data. U-shaped distributions play
an important role in modeling disease incidences (COVID-19, tuberculosis) and mor-
tality rates of persons in dependence of age, see e.g. Khera et al. (2021) and Chaimovicz
(2001). They are also used in consumptivity studies, in particular in modeling online
product reviews, where ratings from 1 to 5 or 1 to 10 are common. It is interesting
to observe that consumers tend to avoid medium ratings. They usually participate
in a review only, when they “love or hate” the product, which results in U-shaped
distributions, see Askay (2013), Hu et al. (2007) and Venkatesakumar et al. (2020).
Furthermore, the mentioned distributions also arise in the study of failure rates. In the
following we present two numerical examples for the fitting of the skew uniform distri-
bution to practical data. We compare its performance with that of other distributions
over [0, 1].

5.1. World wide COVID-19 death rates

We apply the abξ-skew uniform distribution to the COVID-19 death rates of persons in
dependence of their age. Due to Khera et al. (2021), the risk of dying from COVID-19
decreases during childhood up to the age of 3 to 10 years, depending on the country
where the study was performed. The worldwide average of the minimum values is about
8 years. After reaching this minimum, the risk of death increases exponentially. In Fig.
6 the logarithmic worldwide death rates are fitted by the skew uniform distribution,
some generalized beta and the Kumaraswamy distributions.

The histogram indicates the observed mortality. The solid and the dashed lines
indicate the fitted curves of the general skew distribution (13) and its limiting case for
ξ = ∞, see (14). The dash-dotted and the dotted line represent McDonald’s generalized
beta distribution and Libby and Novick’s generalized beta distribution, respectively.
It turns out that the classical beta distribution, McDonald’s generalization and the
Kumaraswamy distribution are visually indistinguishable from each other in Fig. 6.

In Tab. 1 the optimal parameters and quality measures of all pertinent curves are
indicated. In order to measure the model performance, the Aike Information Criterion
(AIC) and Bayesian Information Criterion (BIC) are calculated.

Table 1 reveals that the general skew uniform distribution provides the best fit of
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Figure 6. COVID-19 deaths per 100000 persons in the world population as a function of age.

Table 1. Fitting COVID 19 death rates by six distributions.
Distribution k Loglikelihood l AIC= 2k − 2l BIC= k ln(n)− 2l Optimal parameter values
Beta 2 32.63 -61.26 -55.21 a = 1.407, b = 0.6841
McDonald’s 3 32.91 -59.82 -50.75 a = 7.786, b = 0.6837, p = 0.1671
Libby 3 37.66 -69.32 -60.25 a = 0.8649, b = 1.07, c = 0.2084
SU with ξ = ∞ 2 6.30 -8.6 -2.55 a = 7.538 · 105, b = 2.589 · 105
SU 3 38.57 -71.14 -62.07 a = 4.638, b = −0.6807, ξ = 1.035
Kumaraswamy 2 32.38 -60.76 -54.71 a = 1.428, b = 0.6795
k : number of parameters, sample size: n = 152
Densities defined over the interval [0, 1]:

McDonald’s generalized beta: f(x) = pxap−1(1−xp)b−1

B(a,b) , (a, b > 0)

Libby and Novick’s generalized beta: f(x) = caxa−1(1−x)b

B(a,b)(1−(1−c)x)a+b , (a, b, c > 0)

Kumaraswamy: f(x) = abxa−1(1− xa)b−1, (a, b > 0)
(Nadarajah (2005, Sections 4 and 5), Kumaraswamy (1980)).

the data. It has the maximal loglikelihood and the statistical measures AIC and BIC
are minimal. In particular,the SU fits the mortality rates for low ages better than the
other distributions do.

5.2. Online product reviews

Next, we fit the above distributions to the empirical data of an Amazon´s online
product review of a music CD, see Fig. 7. The application makes use of the data in
Hu et al. (2007, p. 11, Fig. 5b). The histogram presents the number of ratings with

Figure 7. Product ratings of a music CD.

one to five stars. Tab. 2 gives the statistical quality measures and optimal parameters
for the fitting.

Table 2. Fitting product ratings by six distributions.
Distribution k Loglikelihood l AIC= 2k − 2l BIC= k ln(n)− 2l Optimal parameter values
Beta 2 35.67 -67.34 -62.63 a = 1.189, b = 0.4752
McDonald’s 3 35.78 -66.56 -58.49 a = 0.6350, b = 0.4632, p = 2.056
Libby 3 36.96 -67.92 -60.85 a = 7483, b = 0.3706, c = 20379
SU with ξ = ∞ 2 10.33 -16.66 -11.95 a = 1.520 · 106, b = 51971
SU 3 41.66 -77.32 -70.25 a = −10.86, b = 25.69, ξ = 0.1167
Kumaraswamy 2 35.71 -67.42 -62.71 a = 1.227, b = 0.4741
k : number of parameters, sample size: n = 78
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As in Section 5.1, the general skew uniform distribution provides the best fit of the
data, and the curves of the beta distribution, its generalization of McDonald and the
Kumaraswamy distribution are indistinguishable from each other in Fig. 7. Similar to
the previous application, the SU fits the frequencies of 3-star and 4-star evaluations
much better than the other distributions do.

6. Conclusions

We study a new class of skew uniform distributions which arises by applying a
procedure of Cortés et al. (2018) to the uniform distribution. We investigate the
density and the cumulative distribution function and study several characteristics
like moments, shape, quantile function and Hazard rate function. The Shannon
entropy and the maximum likelihood equations are also developed. The new probabil-
ity distribution is applied to model COVID-19 death rates and online product reviews.
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